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Blob-Hole Structures as Non-Axisymmetric Equilibrium Solutions
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We characterize blob-hole structures as equilibrium solutions for potential vorticity (PV) conserving sys-
tems. To demonstrate this, we consider equilibrium statistical mechanics of PV conserving fluids. We calculate
partition function and free energy of the system, under the constraints that the energy and all the moments of
PV are conserved. Equilibrium solutions are obtained by minimizing the free energy. As an example of analyt-
ical solutions from this approach, we consider solutions that conserve the energy and potential enstrophy. The
connection of the obtained solutions to blob-hole structures is discussed.
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1. Introduction

Understanding tokamak turbulence is essential for the
success of ITER and DEMO. An important element in
tokamak turbulence is a blob or hole structure, which is ob-
served in the tokamak edge [1–3]. In the tokamak edge, the
steep gradient of the profile flattens and creates a pair of a
blob and hole. Once generated, these structures propagate
- blobs propagate down the gradient while holes propagate
up the gradient. Relaxation process due to these struc-
tures is quite dierent from conventional relaxation pro-
cess by drift wave turbulence [4]. Indeed, these structures
are more ecient in tapping free energy than drift waves,
as these structures can drive subcritical instability [4, 5].
In other words, structures can drive instability even when
linear drift waves are predicted to be stable. Thus, struc-
tures are an important element in understanding tokamak
phenomenology.

In order to understand physical property of these
structures, several research is on-going [6–9]. However,
while previous studies revealed basic physics of blobs
and holes, they did not address the role of potential vor-

ticity (PV) [10] in understanding blob/hole phenomenol-
ogy. In plasmas, PV is viewed as the total charge, as PV
q = ne  2

s2
 for Hasegawa-Mima [11] or Hasegawa-

Wakatani [12] system. At the simplest level, PV is con-
served along trajectory produced by E  B convection,
dq/dt = 0. The conservation of PV has significant im-
pact on turbulence dynamics and relaxation process. For
example, in PV conserving system, both the energy and
the potential enstrophy

R
dxdyq

2 are conserved. Due to
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this property, the dual cascade of energy and potential en-
strophy can occur, and the inverse cascade of the energy
can pump zonal flows at the large scale [13, 14]. More
recently, an exact momentum budget for drift wave turbu-
lence and zonal flows was proved for such PV conserving
system [15]. Given these impact of PV conservation on tur-
bulence dynamics or relaxation, then this naturally raises a
question regarding the consequence of PV conservation in
blob-hole physics. For example, we might ask questions
such as what is the impact of PV conservation on the gen-
eration of these structures.

In this paper, we discuss blobs and holes as equilib-
rium solutions in PV conserving systems. To do so, we
consider equilibrium statistical mechanics for PV conserv-
ing fluids [16, 17]. In this line of thought, we calculate
partition function and free energy, under the constraints
that energy and all the moments of PV is conserved. After
deriving a general equation to determine equilibrium so-
lutions under the constraints, we consider the special case
that the energy and the second moment of PV, i.e. poten-
tial entrophy, are conserved. We obtain analytical solutions
and discuss their connection to blob-hole structures.

The remainder of the paper is organized as follows.
In section 2, we explain a basic model and construct sta-
tistical mechanics for the model. There, we calculate free
energy F[q] and partition function Z =

R
Dq exp(F[q]).

We also derive an equation to determine equilibrium so-
lutions, by minimizing the free energy. In section 3, we
consider a limited case that energy and potential enstrophy
are conserved. Analytical solutions are presented. Section
4 is summary and discussion.

c 2013 The Japan Society of Plasma
Science and Nuclear Fusion Research

2403080-1



Plasma and Fusion Research: Regular Articles Volume 8, 2403080 (2013)

2. Statistical Mechanics of Potential

Vorticity Conserving Fluids

In this paper, we consider Hasegawa-Mima model for
drift wave turbulence:

t(1  2
) + ẑ   · (2

) + vy = 0. (1)

Here, normalization is standard, i.e.

cit  t, s  ,
e

Te
 , s

Ln

 v, (2)

where L
1
n
= x lnn is the scale length in the mean den-

sity profile. v measures the inhomogeneity in the system.
A linearized solution of Eq. (1) is drift wave, whose dis-
persion relation is obtained as k = e/(1 + 2

s k
2
).

Eq. (1) has several conserved quantities. First, by mul-
tiplying Eq. (1) by  and integrating over space, we obtain
energy conservation:



t

1
2

Z
dxdy{2 + ()2} = 0. (3)

Secondly, Eq. (1) conserves potential vorticity:

dq

dt
= 0, (4)

where q = (12
)vx is the potential vorticity for drift

wave turbulence. It then follows that all the moments of q,
n 

R
dxdyq

n, are conserved.
These conservation relations constraint behavior of

the system. In particular, relaxation occurs while respect-
ing these constraints. In order to account for relaxation
process under these constraint, here we consider equilib-
rium statistical mechanics of PV conserving fluids. By
using the method, we derive equilibrium solutions for
Eq. (1) and show that these equilibrium solutions contain
blob/hole structures.

At this point, it would be important to discuss how in-

viscid system approaches an equilibrium state irreversibly.
This point may be clarified by recalling the argument by
Lynden-Bell and Dupree on irreversible relaxation in colli-

sionless Vlasov system [18, 19]. The key to the discussion
is the development of fine scales and the coarse-graining
of these scales. In PV perspective, this argument is elabo-
rated as follows. Namely, as relaxation proceeds, PV fluids
are mixed by random turbulent advection. In this mixing
process, each fluid element has the same PV that it was
assigned in the initial position. Due to this property, af-
ter some mixing process, neighboring fluid elements may
originate from distant locations and can have significantly
dierent values of PV. This leads to fine scale variation of
PV, which can be arbitrarily fine in the inviscid system.
However, such small scales eventually becomes so small
that we cannot resolve by given physical resolutions. At
this point, we introduce the coarse-graining to smooth out
the variation over arbitrarily fine scales. It is this coarse-
graining that introduces an eective collision in the system

and thus allows irreversible evolution of the coarse-grained
PV towards an equilibrium state.

Given there is an equilibrium state in PV conserv-
ing system, now we characterize the state by calculat-
ing the free energy F[q] and the partition function Z =R
Dq exp(F[q]). In this approach [16, 17], the equilib-

rium state is characterized as the state with the minimal
F[q]. Note this is analogous to the mean field solution in
the phase transition model [20, 21], where the mean field
solution gives the minimal free energy and contributes to
the partition function significantly via the stationary phase.

F[q] for Eq. (1) is calculated as follows. To account
for the conservation of energy and all the moments of q,
F[q] is given as

F[q] =


2

Z
dxdy{2+ ()2}+

X

n

µn

n

Z
dxdyq

n.

(5)

Here  and µn are Lagrange multipliers. To write Eq. (5) as
a function of q, we introduce Green’s function

(1  2
)G(x, x) = (x  x). (6)

This allows us to write F[q] as

F[q] =


2

Z
dxdydx

dy

q(x)G(x, x)q(x)

 
Z

dxdyh(x)q(x)

+
X

n

µn

n

Z
dxdyq

n + F0. (7)

Here

h(x)  
Z

dx
dy

G(x, x)vx, (8)

and

F0 


2

Z
dxdy

Z
dx
dy

v

2
xG(x, x)x

. (9)

F0 does not depend on q and gives a constant value; hence
we neglect this term here after. Note that the free energy
F[q] has analogous form as the free energy for the phase
transition model for magnetization [20]. In particular, if we
only retain µ2 and µ4, the free energy has the same form as
the free energy for the 4 model with external field h [21].

3. Equilibrium Solutions for PV Con-

serving Systems

The equilibrium solutions are obtained by minimizing
the free energy:

F[q]
q

=  +
X

n

µnq
n1[] = 0. (10)

By solving Eq. (10), we can obtain equilibrium solutions
in Hasegawa-Mima system, that conserves the energy and
all the moments of q.
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Fig. 1 A blob (a localized excess, q̃ > 0) and a hole (a localized
depletion q̃ < 0) in the background mean PV q. The
structures are localized in the radial direction x, with the
size .

Here, as an example of such solutions, we consider a
limited case of µn , 0 only for n = 2. This corresponds to
the case that the energy and potential enstrophy

R
dxdyq

2

are conserved. This case is akin to statistical mechanics
developed by Kraichnan [13] or Hasegawa [14], for 2D
or quasi-2D fluids with the energy and potential enstrophy
conservation. In this limit, Eq. (10) reduces to

 + µ2{(1  2
)  vx} = 0. (11)

Eq. (11) can be solved as

 =
X

k

k exp(ikyy) exp
 
 |x|
k

!
+

vx

1 + /µ2
, (12)

where 2
k
= 1 + /µ2 + k

2
y
.

The equilibrium solution (Eq. (12)) describes solitary
potential structures, as discussed in [22]. Solitary potential
structures are related to PV blob/hole as follows. First, 
and q are related as q = (/µ2) via Eq. (11). Note that
q = q[] is indeed an equilibrium solution of Hasegawa-
Mima equation, since E  B flows cannot mix q[]. The
equilibrium PV is now q = q + q̃, where

q =  
µ2
0 exp

 
 |x|
0

!
 
µ2

vx

1 + /µ2
, (13)

is the zonally averaged background mean part and

q̃ =  
µ2

X

k


k exp(ikyy) exp

 
 |x|
k

!
, (14)

is the localized depletion/excess. Here the prime on the
summation denotes the sum except for ky = 0. Typical
configuration is depicted in Fig. 1. When q̃ > 0, q̃ gives a
localized depletion, of the size    s. This corresponds
to the PV blob. Similary, when q̃ < 0, q̃ gives a localized
depletion, which can be viewed as the PV hole. Note that
blobs (q̃ > 0) and holes (q̃ < 0) are equally probable in this
formulation.

As a caveat, we note that the solution obtained here is
only valid for non-axisymmetric case with kz , 0, as PV
q = (12

)vx includes adiabatic electrons. However,
in reality, plasmas support axisymmetric fluctuations with
both kz = 0 and ky = 0, such as zonal flows, as well as non-
axisymmetric fluctuations. Then this naturally raises the

question on how we reconcile zonal flows in this type of
approach. To address this issue, here we note that there are
at least two ways to include zonal flows in this story. The
first way is to re-define PV for axisymmetric case and re-
peat the analysis for axisymmetric case. Note that the equi-
librium statistical mechanics with PV conservation is ap-
plicable for axisymmetric zonal flows, since zonal modes
also conserve PV, dq/dt = 0 with q = 2

. However, care
must be taken in order to treat zonal flows in this approach.
For example, axisymmetric solutions cannot be obtained
by simply taking ky, kz  0 in Eq. (12). This is because
Eq. (12) is obtained as non-axisymmetric solutions with
adiabatic electrons with kz , 0, q = (1  2

)  vx.
To treat axisymmetric solutions with kz = ky = 0 in this
approach, we must re-define some variables, as

q = 2
, 2

G(x, x) = (x  x), h 0.

With these redefinitions, we can now calculate the free
energy with the energy and PV conservation. By mini-
mizing the free energy we can obtain axisymmetric solu-
tions. The second way to reconcile zonal flows is to con-
sider the dynamics of non-axisymmetric solutions. Once
formed, these non-axisymmetric solutions can grow by re-
leasing the ‘free energy’ stored in the gradient. In this dy-
namical process, non-axisymmetric solutions (holes/blobs)
can drive zonal flows by scattering polarization charge,
which leads to zonal flow generation via the Taylor identity
ṽx2

̃ = xṽxṽy. Detailed analysis of the dynamical
coupling of holes and zonal flows are given in literature,
albeit the analysis is for phase space density holes [5].

4. Conclusion and Discussion

In this paper, we argued that blobs and holes are
characterized as equilibrium solutions in potential vorticity
(PV) conserving fluids. To demonstrate this, we developed
equilibrium statistical mechanics, with the conservation of
energy and all the moments of PV. We calculated the free
energy with Lagrange multiplier. By minimizing the free
energy, we obtained equilibrium solutions. As a specific
example of such solutions, we discussed the case with the
energy and potential enstrophy conserved. For this case,
we obtained analytical solutions and discussed their rela-
tion to PV blobs and holes.

Theory presented here has relevant implication for the
fusion community. Since tokamaks are strongly magne-
tized, potential vorticity conservation likely play a role in
determining the behavior of the system. As demonstrated
above, equilibrium solutions with PV conservation sup-
port blob/hole structures. Hence blobs and holes are likely
present in a stationary state of strongly magnetized plas-
mas. This suggests that, while we tend to model toka-
mak turbulence as an ensemble of linear eigenmodes (such
as drift waves), blob/hole structures cannot be neglected
from transport analysis by tokamak turbulence. For exam-
ple, such blobs or holes could play a role in the problem
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Fig. 2 PV holes and ‘No Man’s Land’ [5]. The strong gradient
at the edge can flatten and create a pair of a blob and hole.
Once formed, a blob propagates down the gradient, while
a hole propagates up the gradient. Such propagating hole
structures can enter the edge-core coupling region (‘No
Man’s Land’) and can enhance fluctuations by extracting
free energy in the local gradient, in addition to the linear
instability driven by linear drift waves.

of the edge-core coupling region in tokamaks, so-called
‘No Man’s Land’ (Fig. 2). In this region, recent validation
study [23] found that turbulence level cannot be explained
by simulations based on local models, which model tur-
bulence by local instabilities driven by the local gradient.
The hole structures discussed in this paper can contribute
to the turbulence in NML non-locally. Once formed at the
edge, these structures can propagate up the gradient and
can extract free energy in these regions. Thus these struc-
tures may enhance turbulence level in the region, in addi-
tion to the linear instability driven by the local gradient.
As a caveat, we note that the discussion presented here
is heuristic, and hence a more detailed analysis is desir-
able to describe the dynamics of blob/hole structures. Such
dynamics of blobs or holes involves turbulent transport of
particles, which is non-zero only when there is a phase dif-
ference between density and potential fluctuations. Hence
in order to describe the dynamics of blob/hole structures,
we need a model that treats non-adiabatic electron re-
sponse, such as Hasegawa-Wakatani model. The model for
blob/hole dynamics based on Hasegawa-Wakatani turbu-
lence is discussed elsewhere and we refer interested read-
ers to the reference [24].
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